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A B S T R A C T   

Soft corals in the Philippines have received little attention. In this study, community structure and size-frequency 
distribution of soft corals were assessed via quantitative surveys in a heavily disturbed reef system in north
western Philippines. Relationships between selected environmental parameters and benthic components were 
also investigated. Results reveal that soft coral cover, density, and taxa richness were lowest at stations nearest a 
fish farming area, characterized by the poorest water quality. Differences in dominance of taxonomic groups may 
indicate differences in environmental preference or tolerance. Exposure to waves and water clarity were 
determined to have high correlations with the distribution of different taxa. Symmetrical size distributions of 
selected alcyoniids were indicative of healthy populations. However, the negative skewness of Lobophytum may 
indicate an eventual population decline caused by unfavorable environmental conditions. The study’s findings 
suggest the need to conduct a detailed analysis of the different soft coral variables during coral reef surveys to 
improve data interpretations necessary for coral reef management in the Philippines.   

1. Introduction 

Coral reefs are one of the most diverse ecosystems in the world 
(Connell, 1978). Despite their importance, coral reef health is declining 
due to various disturbances, both natural and anthropogenic (Hughes 
et al., 2003; Hughes et al., 2010; Heery et al., 2018). Natural distur
bances include storms and increased sea surface temperature (SST), 
while anthropogenic threats are mainly derived from pollution and 
overfishing (Baum et al., 2015; Yang et al., 2015; Zaneveld et al., 2016; 
Glynn et al., 2017). For the Philippines, an archipelagic country, these 
reefs contribute billions of US dollars annually to the economy through 
fisheries, tourism, and other ecosystem services (Tamayo et al., 2018). A 
recent nationwide assessment of coral reefs in the Philippines revealed a 
continuing decline in coral cover (Licuanan et al., 2019) partially 
attributed to pollution and overfishing (Gomez et al., 1994; Nañola 
et al., 2011). 

Soft corals are major benthic components of Indo-Pacific coral reefs 
and are highly abundant in many regions (Fabricius and Alderslade, 
2001). As major benthic components, they contribute to coral reef 
complexity by providing habitats to various organisms (Depczynski and 
Bellwood, 2004; Poulus et al., 2013; Ferrari, 2017) and constituting part 

of the diet of various organisms (e.g., Van Alstyne et al., 1994; Yesson 
et al., 2012; Epstein and Kingsford, 2019; Garra et al., 2020). Soft corals 
also contribute to reef formation through the deposition of their calcite 
skeletal material, sclerites (Jeng et al., 2011; Shoham et al., 2019). 
However, the ecological roles of soft corals and their responses to 
changing environmental conditions, potentially leading to shifts in 
community structure, which affect the entire reef ecosystem and its 
services, are still not yet fully explored. 

Soft coral distribution and contribution to coral reef community 
structure has been thoroughly studied in some regions in the Indo- 
Pacific, such as in the Red Sea, Great Barrier Reef (Australia), and 
Hong Kong (e.g., Benayahu and Loya, 1981; Dinesen, 1983; Yeung et al., 
2014). One study of note that highlighted the major contributions of 
different soft coral taxa to coral reef community structure is that by 
Ninio and Meekan (2002), which demonstrated that among three 
distinct coral reef groups in the Great Barrier Reef, one group was 
characterized by a high abundance of soft corals of the family Alcyo
niidae with hard corals, while another one was mainly characterized by 
Xeniidae soft corals. However, there is a large gap in the data pertaining 
to soft corals in the Coral Triangle, despite this region being known as 
the center of marine biodiversity (e.g., Carpenter and Springer, 2005; 
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Sanciangco et al., 2013). In many reef surveys, soft corals are often 
categorized as a single group with no lower taxonomic differentiation, 
unlike scleractinians, which are usually identified to the generic level (e. 
g., Licuanan et al., 2019). This limits the interpretation of coral reef 
benthic data, which is crucial for management purposes. 

One of the best-studied reef systems in the Philippines is the Bolinao- 
Anda Reef Complex (BARC), covering an area of 200 km2 of fringing reef 
along a coastline of 37 km (Cruz-Trinidad et al., 2011). BARC contrib
utes at least 38 million US dollars annually to the economy of Lingayen 
Gulf directly from reef services, as well as indirectly from shoreline 
protection (Cruz-Trinidad et al., 2009). However, BARC has experienced 
various disturbances in the past decades, including increased sea surface 
temperature (SST), storms, and overfishing, which have led to 
ecosystem degradation (Arceo et al., 2001; Nañola Jr. et al., 2002; 
Shaish et al., 2010). A recognized threat to the coral reefs in BARC is the 
presence of fish farms, which have resulted in increased nutrient con
centrations and sedimentation, and consequently decreased water 
clarity in the adjacent waters. This environmental impact has resulted in 
a series of fish mortality episodes due to algal blooms, the deterioration 
of soft bottom macroinfaunal communities, and reduced seagrass di
versity (Azanza et al., 2005; Nacorda et al., 2012; Tanaka et al., 2014). 
The benthic communities on adjacent reefs have been negatively 
impacted, as shown by the reduced settlement and growth and increased 
mortality of hard corals, along with increased algal cover (Villanueva 
et al., 2005, 2006; Quimpo et al., 2020). Moreover, effluents from the 
fish farms have become a serious concern since these can reach nearby 
coral reefs especially during the wet season (Ferrera et al., 2016). 

Responses of corals at both community and population levels to 
environmental conditions, which includes disturbances (i.e., sedimen
tation, eutrophication, increased SST, storms, ocean acidification) have 
been well-documented and can be used to indicate coral reef health (Bak 
and Meesters, 1998; Cooper et al., 2009; Fabricius et al., 2012). At the 
population level, numerous studies have investigated the influence of 
environmental conditions on size-frequency distributions of coral pop
ulations (e.g., Bak and Meesters, 1998; Adjeroud et al., 2015). Variations 
of the size-frequency distribution of a species can indicate variations in 
environmental conditions and can even be useful in indicating historical 
events when long-term monitoring data is unavailable (Bak and 
Meesters, 1998). However, studies have only focused on hard corals 

while patterns of soft coral size-frequency distribution are still unex
plored. At the community level, most soft coral studies have focused 
mainly on the effects of varying water quality to species diversity and 
composition (e.g., Fabricius and McCorry, 2006; De’ath and Fabricius, 
2008; Fabricius et al., 2012) while combined effects of other factors to 
community structure in relation to coverage of different taxa is rela
tively unexplored. Thus, effects of varying environmental conditions to 
soft coral size-frequency distribution and community structures have yet 
to be fully understood. 

The goals of this study were (1) to assess and compare soft coral 
community structures at different spatial scales, (2) to investigate the 
influence of selected benthic components and environmental parame
ters (i.e., wave exposure, water clarity) to the distribution of different 
soft coral taxonomic groups, and (3) to determine the size-frequency 
distribution of selected soft corals in BARC. To the best of our knowl
edge, this is the first study to quantitatively examine the contribution of 
different soft coral taxa in Philippine coral reefs and is also the first to 
look at patterns in soft coral size-frequency distribution. The insights 
from this study may also help us better understand the influence of 
varying environmental conditions on coral reef benthic community 
structure. In general, this can help improve our capacity in the inter
pretation of the reef benthic community structure, which is necessary for 
coral reef management. 

2. Materials and methods 

2.1. Study sites and sampling design 

Seven sites were established in BARC (N 16.3 E 119.9), Pangasinan, 
northwestern Philippines (Fig. 1). These sites were selected based on the 
presence of shallow-water coral communities indicated by previous 
studies in the area (e.g., Villanueva et al., 2005, 2006; Villanueva et al., 
2012). A hierarchical sampling (nested) design was applied to study the 
benthic communities of BARC on different spatial scales (Green et al., 
2011). Sites were at least 1 km distant from one another and each site 
comprised two stations at least 100 m distant from one another. Each 
sampling station covered a 75 m × 25 m area at 3–5 m depth following 
the protocols of van Woesik et al. (2009). This design allowed us to 
compare soft coral communities at different spatial scales– among-sites, 

Fig. 1. The seven study sites established in the Bolinao-Anda Reef Complex (BARC), Pangasinan, northwestern Philippines.  
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within-sites, and among-stations. 

2.2. Survey methods 

Coral reef surveys were carried out through SCUBA diving. Five 50-m 
line transects were deployed inside each station, following the reef 
contour. Photoquadrats were taken for each meter of the shallow side of 
the transect using a camera (Sony Cyber Shot DSC RX100) inside an 
underwater housing with a wide-angle lens attached to a tetrapod to 
ensure that a 1 m2 area of the reef surface was covered in each photo. To 
facilitate soft coral identification during image analysis, close-up photos 
of colonies representing different morphologies were also taken and the 
positions were recorded of colonies along the transects. The presence of 
very small (<5 cm) soft coral colonies along a transect, which might not 
be clearly visible in the photoquadrats, was also recorded. 

2.3. Image analysis 

Fifty photoquadrats per transect were analyzed using the Coral Point 
Count with Excel extensions (CPCe) (Kohler and Gill, 2006). The area 
analysis feature of the CPCe was used to record the surface areas of all 
soft coral colonies observed in the quadrats. Soft corals were identified 
to the lowest taxonomic level possible. Due to the challenges in identi
fication, it was more practical to use coral taxonomic amalgamation 
units (TAUs). Coral TAUs are used to represent different species that are 
hard to differentiate, referred to hereafter as “taxonomic groups” (e.g., 
Zvuloni et al., 2010). The taxonomic groups used in this study are listed 
in Table S1. For the current study, each taxonomic group represented 
either a genus or a family. It is also worth mentioning that prior to image 
analysis, the personnel who analyzed the images conducted numerous 
SCUBA dives in the study sites to document soft corals with different 
morphologies and was trained by a taxonomic expert in identification. 
These activities provided us with confidence in identifying soft corals in 
the images using the taxonomic resolution mentioned. The circumfer
ence of each soft coral colony in the photoquadrats was traced to 
calculate the surface area (cm2). Surface areas of the colonies were then 
summed to obtain the total area covered by the soft corals per transect. 
These values were then converted to percentage cover (% cover =
(Taxonomic group cover (cm2)/500,000 cm2) × 100%) to represent the 
percentage cover of the different taxonomic groups in a transect. Per
centage cover of the non-soft coral benthic components, such as hard 
corals, macroalgae, crustose coralline algae, and abiotic components (i. 
e., sand, silt, rocks, rubble, dead coral) were also analyzed using 10 
randomly placed points in each 1 × 1 m frame using the CPCe (Kohler 
and Gill, 2006). Percentage covers of the non-soft coral benthic com
ponents were used as predictor variables for the canonical correspon
dence analysis (CCA). 

Patterns of the size-frequency distribution of Lobophytum, Sarcoph
yton, and Sinularia were analyzed. The surface areas (cm2) of the col
onies of these taxonomic groups were used for the analysis. Number of 
colonies under these groups inside the photoquadrats were also counted 
to generate density data (no. of colonies per 50 m2). The chosen taxo
nomic groups are considered appropriate for population structure 
studies since they are known to be slow-growing and their sizes are 
related to different life stages (Benayahu and Loya, 1986; Fabricius, 
1995; Fan et al., 2005). Also, individual colonies of these taxonomic 
groups can be easily differentiated, unlike several other soft coral taxa 
which have mat-like growth forms. 

2.4. Environmental parameters 

Physical and chemical parameters were measured to characterize the 
environmental conditions at all seven sites. Water samples were 
collected to measure nutrient concentrations (i.e. Nitrate (NO3), Nitrite 
(NO2), Phosphate (PO2), Ammonium (NH4), and Silicate (SiO2)), 
salinity, total alkalinity (TA), and pH. Chemical parameters were 

analyzed adopting the protocols of Strickland and Parsons (1972). Total 
alkalinity and pH were measured through potentiometric titration using 
the Kimoto ATT-05 Total Alkalinity titrator. Chemical parameters were 
mainly analyzed by the Biogeochemistry laboratory of the Marine Sci
ence Institute of the University of the Philippines (UP MSI). Secchi depth 
of each site was monitored to determine water clarity (Preisendorfer, 
1986). Collection of water samples and measurements of Secchi depth 
were conducted once in February and again in August of 2019. Sec
ondary data of the Relative Exposure Index (REI) values of the different 
sites collected by the Physical Oceanography laboratory of UP MSI 
(http://mandaragat.org/midas/exposure/) were also considered in this 
study. REI represents the level of exposure of a site to wind and waves. 
The REI was calculated using the wave exposure model developed by 
Malhotra and Fonseca (2007) using Philippine coastline, bathymetry, 
and wind data. 

2.5. Statistical analyses 

The nested sampling design of the study allowed us to compare the 
different soft coral variables (i.e., cover, taxa richness, and community 
assemblages) at two spatial scales: (1) among-sites and (2) within-sites. 
Additionally, variability among-stations, regardless of the sites, were 
also investigated. Shapiro-Wilk’s test for normality and Bartlett’s test for 
homogeneity were performed for all the datasets. A dataset was log- 
transformed if it was not normally-distributed or non-homogenous. 
For normally-distributed and homogenous datasets, an analysis of 
variance (ANOVA) was used to compare the mean values in the soft coral 
cover and taxa richness at the two spatial scales. The Tukey’s HSD post- 
hoc test was then performed for datasets with significant (p-value <
0.05) results from the ANOVA to determine which stations or sites 
significantly differed from each other. The non-parametric Kruskal- 
Wallis test and the Mann-Whitney pairwise comparisons test were used 
for non-normally-distributed and non-homogenous datasets. Water 
chemistry parameters, Secchi depths, and pooled average densities of 
selected soft coral genera (Lobophytum, Sarcophyton, and Sinularia) were 
compared among-sites using the same tests. The univariate tests applied 
were performed using the PAST software (Hammer et al., 2001). 

Multivariate analyses were performed to examine the differences in 
the soft coral community structure among-sites and within-sites. Soft 
coral percentage cover datasets were square root-transformed. The 
analysis of similarity (ANOSIM) was then performed using the Bray- 
Curtis similarity index to detect significant differences in the commu
nity compositions at the two spatial scales (Clarke and Warwick, 1994). 
The similarity percentages (SIMPER) analysis was then performed to 
determine the contribution of the different taxonomic groups to the 
similarities and differences among- and within-sites (Clarke and War
wick, 1994). The ANOSIM and SIMPER analysis were performed using 
PRIMER-E v6.0 (Clarke and Gorley, 2006). 

The Canonical Correspondence Analysis (CCA) was also performed 
to relate the soft coral community composition to known variation in a 
set of environmental factors (Ter Braak, 1986). The CCA is an ordination 
method used to analyze spatial distribution of different taxonomic 
groups in relation to biotic and abiotic factors. For this analysis, % 
covers of the taxonomic groups were square root transformed and out
liers were not included in the analysis; taxonomic groups which had less 
than 3 sample points were considered outliers (i.e., rare groups) (Maliao 
et al., 2008). In this analysis, the Relative Exposure Index (REI) values, 
Secchi depths, and percentage covers of selected non-soft coral benthic 
components were used as site descriptors. The CCA was performed using 
the PAST software (Hammer et al., 2001). 

Descriptive statistic parameters (i.e., skewness, kurtosis, coefficient 
of variation, mode) and histograms of the colony areas of the Lobophy
tum, Sinularia, and Sarcophyton of the 7 sites were generated to visualize 
the size-frequency distributions of each taxa, following other coral 
population structure studies (e.g., Adjeroud et al., 2007; Adjeroud et al., 
2015). The colonies of each taxonomic group for the 2 stations of each 
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site were pooled together to have a sufficient sample size. Values of the 
areas of the colonies were log 10-transformed to normalize size- 
frequency distributions and increase resolution among smaller sizes 
(Bak and Meesters, 1998; Adjeroud et al., 2015). The 2-sample 
Kolmogorov-Smirnov (KS) test was also performed to compare the 
size-frequency distributions of the colonies among-sites. The R and PAST 
software were used to perform the different tests (Hammer et al., 2001; 
R Core Team, 2018). 

3. Results 

3.1. Soft coral community structure 

A total of 14 stations with 70 transects and 3500 photoquadrats were 
analyzed. From all seven sites, a total of 15 taxonomic groups repre
senting nine coral families were recorded (Table S1). Trenchera had the 
lowest mean taxa richness among the sites (Fig. 2a). However, among- 
site differences on mean taxa richness were not significant (Kruskal- 
Wallis p-value = 0.08) (Table 1). Significant differences were observed 
among-stations (ANOVA p-value = 6.23− 23) with Trenchera having the 
lowest values. Azooxanthellate octocorals of the families Nidaliidae and 
Paraplexauridae were also found in Trenchera (Table S1). The azoox
anthellate genus Dendronephthya (Nephtheidae) was noted at the station 
in Lucero nearest to Trenchera. Despite observed differences among- 
stations, pairwise comparisons revealed insignificant differences be
tween the stations within-sites (Tukey’s test p-value > 0.05) (Table 1). 

Fig. 2. Soft corals of the Bolinao-Anda Reef Complex (BARC) (a) mean taxonomic richness (±SE) and (b) percentage cover (±SE) at each of the seven study sites and 
their respective two stations. 

Table 1 
Test for significance (ANOVA/Kruskal-Wallis test/Tukey’s 
test/Mann-Whitney test) results of the comparisons of total soft 
coral cover and taxa richness at different spatial scales 
(Amongsites, among-stations, and within-stations).  

Spatial scale p-Value 

Total soft coral cover 
Among sites 0.10 
Among stations 1.29− 8 

Balingasay1 × Balingasay2 0.01 
Cabunggan1 × Cabunggan2 0.01 
Caniogan1 × Caniogan2 0.02 
Lucero1 × Lucero2 0.21 
Malilnep1 × Malilnep2 0.30 
Panakalan1 × Panakalan2 0.01 
Trenchera1 × Trenchera2 0.24  

Taxa richness 
Among sites 0.08 
Among stations 6.23− 16 

Balingasay1 × Balingasay2 0.91 
Cabunggan1 × Cabunggan2 0.23 
Caniogan1 × Caniogan2 0.91 
Lucero1 × Lucero2 0.12 
Malilnep1 × Malilnep2 0.98 
Panakalan1 × Panakalan2 0.77 
Trenchera1 × Trenchera2 1.00  
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In terms of mean soft coral cover among-sites, Trenchera had the 
lowest and Balingasay had the highest cover (Fig. 2b). Despite big dif
ferences between mean soft coral cover, there was no significant dif
ference among-sites (Kruskal-Wallis p-value > 0.05). However, overall 
significant difference was noted among-stations (Kruskal-Wallis p-value 
= 1.29− 8). Among the stations, the stations in Trenchera had the lowest 
values. Unlike taxa richness, pairwise comparisons of the mean soft coral 
covers revealed significant differences between stations within Baling
asay, Cabunggan, Caniogan, and Panakalan. Within-site differences of 
mean soft coral covers were not significant for Trenchera, Lucero, and 
Malilnep. 

The ANOSIM, which takes into consideration the taxonomic groups 
present and their covers, revealed an overall significant difference in the 
community structure among-sites (ANOSIM R = 0.61, p-value = 0.001) 
and among-stations (ANOSIM R = 0.66, p-value = 0.001). However, 
pairwise comparisons revealed no difference between Cabunggan and 
Caniogan (ANOSIM R = 0–0.05, p-value = 0.77). Except for Lucero and 
Trenchera, soft coral community structures within-sites significantly 
differed (Table 2). 

The SIMPER analysis revealed differences in the taxonomic groups 
which dominated each site (Table 3). Balingasay was mainly dominated 
by Clavularia (SIMPER % contribution = 83.43%) while Trenchera was 
dominated by both Lobophtyum (SIMPER % contribution = 50.74%) and 
Briareum (SIMPER % contribution = 49.26%). Lucero and Malilnep were 
mainly dominated by Lobophytum (SIMPER % contribution >60%). 
Cabunggan, Caniogan, and Panakalan were dominated by 4 groups: Isis, 
Lobophytum, Sinularia, and Sarcophyton (SIMPER cumulative % contri
bution >90%). Among the 4 groups mentioned, Isis had the highest 
contribution to the similarity in each of the 3 sites. Dissimilarity per
centages of taxonomic groups which differentiate the sites from one 
another are shown in Table S4. 

Dissimilarity percentages of taxonomic groups which differentiated 
the stations within the sites are shown in Table S5. The difference be
tween the stations within Balingasay was mainly attributed to Clavularia 
(Dissimilarity % contribution = 83.66%). Differences in the cover of 
Lobophytum mainly differentiated the stations within Trenchera, Lucero, 
Cabunggan, and Caniogan (Dissimilarity % contribution >29%). Briar
eum differentiated the stations within Malilnep (Dissimilarity % contri
bution = 24.61%) while difference within Panakalan was attributed 
mainly to Sinularia (Dissimilarity % contribution = 29%). 

3.2. Non-soft coral benthic components 

Table 4 shows the percentage covers of the non-soft coral benthic 
components in the 7 sites. Balingasay had the highest hard coral cover 
(22.52 SE ± 2.98), while Trenchera had the lowest (2.94 SE ± 1.07). 
However, Balingasay also had the highest macroalgal cover among the 
sites, while Trenchera and Lucero had the lowest (2.16 (SE ± 1.64) & 
2.12 (SE ±0.30), respectively). Crustose coralline algae were highest in 

Lucero (22.71 SE ± 5.73) and absent in Panakalan. Silt cover was 
highest in Trenchera (21.08 SE ±9.61) and sand cover was highest in 
Panakalan (32.98 SE ± 6.54). 

3.3. Environmental parameters 

Also presented in Table 4 are the values of the different chemical and 
physical measurements in the different sites. While ammonium (NH4) 
level was low at the Cabunggan, Caniogan, and Panakalan, and highest 
at Malilnep and Lucero, there were no significant differences (Kruskal- 
Wallis, p-value = 0.20). Nitrite (NO2) level was significantly higher in 
Trenchera compared to the other sites (Mann-Whitney post hoc tests, p- 
value < 0.05). Nitrate (NO3) concentrations exhibited significant dif
ferences among the sites (Kruskal-Wallis test, p = 0.009), which had 
different patterns from the nitrite concentrations. Trenchera had 
significantly higher silicate (SiO2) concentrations compared to the other 
sites (KW & MW tests, p < 0.05). Total alkalinity, salinity, and pH values 
were similar for all seven sites (Kruskal-Wallis, p-value > 0.05). 
Regarding Secchi depth, Balingasay had the highest value and Trenchera 
the lowest (Kruskal-Wallis, p-value < 0.05). However, only Balingasay 
and Trenchera significantly differed among the sites (Mann-Whitney 
test, p-value < 0.05). Balingasay also had the highest relative exposure 

Table 2 
Results of the analysis of similarity (ANOSIM) to compare the differences in the 
soft coral community assemblages at different spatial scales (among-sites, 
among-stations, and within-stations). For pairwise comparisons among sites, 
this table only highlights the values with insignificant difference.  

Spatial scale R p-Value 

Among sites 0.61  0.001 
Pairwise tests − 0.5-1  >0.05 

Among stations 0.661  0.001 
Balingasay1 × Balingasay2 0.904  0.008 
Cabunggan1 × Cabunggan2 0.82  0.008 
Caniogan1 × Caniogan2 0.516  0.008 
Lucero1 × Lucero2 0.304  0.056 
Malilnep1 × Malilnep2 0.456  0.008 
Panakalan1 × Panakalan2 0.996  0.008 
Trenchera1 × Trenchera2 − 0.048  0.492  

Table 3 
Results of similarity percentages (SIMPER) analysis. This table shows the taxo
nomic groups which contribute to at least 90% of the cumulative similarity in 
each site.   

Average 
abundance 

Average 
similarity 

Contribution 
(%) 

Balingasay    
Average similarity: 

52.64    
Clavularia  2.71  43.92  83.43 
Lobophytum  0.14  3.95  7.51 

Trenchera    
Average similarity: 

42.79    
Lobophytum  0.16  21.71  50.74 
Briareum  0.27  21.08  49.26 

Lucero    
Average similarity: 

61.25    
Lobophytum  0.64  45.15  73.71 
Sarcophyton  0.17  12.54  20.48 

Malilnep    
Average similarity: 

70.55    
Lobophytum  0.92  42.62  60.41 
Sinularia  0.28  7.03  9.97 
Tubipora  0.13  6.4  9.07 
Clavularia  0.12  4.81  6.82 
Cladiella  0.15  3.82  5.41 

Cabunggan    
Average similarity: 

84.98    
Isis  1.21  27.79  32.71 
Lobophytum  1.19  25.01  29.43 
Sinularia  0.85  21.61  25.43 
Sarcophyton  0.28  5.45  6.42 

Caniogan    
Average similarity: 

86.97    
Isis  1.14  29.02  33.36 
Lobophytum  1.19  23.99  27.58 
Sinularia  0.87  22.52  25.9 
Sarcophyton  0.28  5.97  6.86 

Panakalan    
Average similarity: 

60.29    
Isis  1.37  24.69  40.95 
Sinularia  1.08  14.43  23.93 
Lobophytum  0.75  12.66  20.99 
Sarcophyton  0.52  7.84  13  
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index, a level that is considered to belong to the “high” exposure cate
gory, while the rest of the sites had “medium” category exposures. 

3.4. Effects of environmental parameters to soft coral distribution 

The distributions of the different taxonomic groups in relation to the 
stations are strongly explained by the different predictor variables used 
in the CCA (Axis 1 = 65.96%) (Fig. 3). Significant values from the 
permutation tests (p-value <0.05) also revealed robust findings. One of 
the most obvious patterns was the positive correlation of Clavularia to 
exposure, crustose coralline algae, hard coral, and Secchi depth, which 
are factors most dominating in Balingasay. The major alcyoniids (Sar
cophyton, Lobophytum, Sinularia) and two gorgonians, Isis and Rumphella, 
aggregated in sites with high sand cover and were negatively correlated 
to the factors that Clavularia positively correlated to (i.e., wave expo
sure). Another notable trend is the positive correlation of the Trenchera 
stations to silt cover and their negative correlations to hard coral cover 
and Secchi depth. 

3.5. Size-frequency distributions 

A total of 1370 colonies of Lobophytum, 226 of Sarcophyton, and 1181 
of Sinularia were recorded and measured. Lobophytum featured a mean 
density of 19.5 (±2.6) colonies per 50 m2, 3.2 (±0.6) colonies for Sar
cophyton, and 16.9 (±2.5) colonies for Sinularia. There were significant 
differences in densities among the sites for these three genera (Kruskal- 
Wallis test: p < 0.01), with that of Lobophytum being the lowest in 
Trenchera, where both Sarcophyton and Sinularia were absent (Fig. 4). 

The surface areas of the Lobophytum colonies ranged from 0.0069 cm2 

to 4708 cm2 with a mean size of 179.2 cm2 (±7.2) (Table S6). For Sar
cophyton, the sizes ranged from 0.3488 cm2 to 6313.2 cm2 with a mean 
size of 116.3 cm2 (±28.4) (Table S7). For Sinularia, the surface areas of 
the colonies ranged from 0.8cm2 to 4175 cm2 with a mean size of 129.1 
cm2 (±7.7 SE) (Table S8). A significant difference was found between the 
mean colony size of Lobophytum and Sinularia (Kruskal-Wallis p-value <
0.05), but not for Sarcophyton. Among the sites, Balingasay exhibited the 
smallest mean colony size for all three taxonomic groups. 

Table 4 
The Bolinao-Anda Reef Complex (BARC): Average values of biotic and abiotic parameters (±SE) at each of the seven study sites. CCA here refers to crustose coralline 
algae.   

Balingasay Trenchera Lucero Malilnep Cabunggan Caniogan Panakalan 

NH4 (μM) 9.99 (SE± 1.67) 13.71 (SE ±4.12) 19.48 (SE ±7.18) 20.61 (SE ± 6.12) 7.34 (SE ± 2.07) 7.81 (SE ±1.49) 11.41 (SE ± 2.66) 
NO2 (μM) 0.06 (SE ± 0.01) 0.31 (SE ± 0.06) 0.12 (SE ± 0.02) 0.13 (SE ± 0.02) 0.10 (SE ±0.02) 0.14 (SE ±0.04) 0.12 (SE ± 0.02) 
NO3 (μM) 0.63 (SE ± 0.12) 3.01 (SE ± 0.95) 2.81 (SE ±1.21) 5.80 (SE ± 3.04) 1.15 (SE ± 0.30) 2.39 (SE ±0.68) 0.78 (SE ± 0.34) 
PO4 (μM) 0.75 (SE ± 0.44) 0.58 (SE ± 0.11) 0.48 (SE ± 0.09) 0.56 (SE ±0.13) 0.53 (SE ± 0.17) 0.37 (SE ±0.07) 0.39 (SE ±0.08) 
SiO2 (μM) 10.14 (SE ±2.44) 19.71 (SE ±3.07) 11.41 (SE ±1.51) 10.41 (SE ± 0.98) 11.07 (SE ± 1.25) 11.39 (SE ±

2.16) 
11.18 (SE ± 1.72) 

Salinity (ppt) 31.62 (SE± 0.37) 31.82 (SE± 0.41) 31.30 (SE±0.48) 31.64 (SE± 0.41) 32.11 (SE ± 0.25) 32.22 (SE± 0.25) 32.23 (SE± 0.39) 
Total alkalinity 

(μmol/kg) 
2151.08 (SE±
16.40) 

2172.64 (SE±
21.78) 

2176.61 (SE±
12.46) 

2135. 50 (SE±
17.19) 

2128.82 (SE 
±12.49) 

2133.74 (SE±
6.00) 

2171.25 (SE±
13.96) 

DIC (μmol/kg) 1891.82 (SE±
9.58) 

1926.18 (SE ±
27.46) 

1639.39 (SE 
±288.76) 

1857.86 (SE±
5.21) 

1876.35 (SE ±
20.07) 

1880.69 (SE±
1.95) 

1922.955 (SE±
12.57) 

pH 8.01 (SE± 0.01) 8.00 (SE ±0.03) 7.99 (SE± 0.02) 8.06 (SE± 0.02) 7.99 (SE± 0.04) 8.00 (SE± 0.01) 8.00 (SE± 0.01) 
Secchi depth (m) 10 (SE ± 0.00) 3 (SE ± 0.00) 5 (SE ± 0.58) 7.33 (SE ± 0.33) 7.67 (SE ± 0.33) 7.67 (SE ±0.33) 7.67 (SE ± 0.33) 
Relative exposure 

index 
6370 (high) 4420 (medium) 2250 (medium) 2320 (medium) 708 (medium) 907 (medium) 876 (medium) 

Hard coral cover (%) 22.52 (SE ± 2.98) 2.94 (SE ± 1.07) 21.84 (SE ±5.78) 12.62 (SE ± 0.70) 9.29 (SE ± 1.06) 8.50 (SE ± 1.41) 16.12 (SE ±2.46) 
Macroalgae (%) 26.90 (SE ±7.52) 2.16 (SE ± 1.64) 2.12 (SE ±0.30) 4.80 (SE ± 1.85) 5.84 (SE ± 0.65) 22.00 (SE ±

6.99) 
9.71 (SE ±9.71) 

Dead coral with algae 
(%) 

0.73 (SE ± 0.10) 0.26 (SE ± 0.05) 1.57 (SE ± 0.17) 2.69 (SE ± 0.88) 0.86 (SE ± 0.15) 1.16 (SE ± 0.15) 3.50 (SE ±3.50) 

CCA 16.33 (SE ±4.37) 3.40 (SE ±2.56) 22.71 (SE ± 5.73) 14.93 (SE ± 1.16) 1.01 (SE ± 0.31) 1.32 (SE ± 0.30) 2.49 (SE ±2.49) 
Dead coral (%) 0 (SE ± 0) 0 (SE ± 0) 0 (SE ± 0) 0.05 (SE ± 0.05) 0.10 (SE ± 0.00) 0 (SE ± 0) 0 (SE ±0) 
Silt (%) 0 (SE ±0) 21.08 (SE ±9.61) 0.05 (SE ± 0.05) 1.20 (SE ± 1.20) 0.05 (SE ± 0.05) 0 (SE ± 0) 0.05 (SE ±0.05) 
Sand (%) 2.82 (SE± 2.82) 0.92 (SE ±0.29) 2.98 (SE ±1.76) 4.76 (SE ± 3.09) 10.45 (SE ±2.53) 8.11 (SE ± 3.35) 32.98 (SE ± 6.54)  

Fig. 3. Ordination plot of the Canonical Correspondence Analysis showing the distribution of the different taxonomic groups and stations (shapes) in relation to the 
environmental factors (green lines). 
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Sinularia and Sarcophyton had symmetrical distributions, which were 
slightly positively skewed (g1 = 0.08) and slightly negatively skewed 
(g1 = − 0.37) distributions, respectively (Fig. 5b-c). Lobophytum pre
sented a moderately negatively skewed distribution (g1 = − 0.56), 
indicating the dominance of large-sized colonies (Fig. 5a). Details of the 
size-frequency distributions of the 3 taxonomic groups are presented in 
Tables S6-S8 and Figs. S1-S3. However, colony counts for Lobophytum 
were very low in Balingasay (14 colonies) and Trenchera (8 colonies). 
Sinularia had low counts in Balingasay and Malilnep (<10 colonies) 
while Sarcophyton had low counts in Balingasay and Lucero (<15 col
onies) and both were absent in Trenchera (Tables S6-S8). This prevented 
a proper comparison of size-frequency distributions between sites with 
relatively extreme environmental conditions (Table 3). We therefore 
compared only those sites with sufficient number of colonies. For 
Lobophytum and Sinularia, comparisons were possible for all the sites 
except Balingasay and Trenchera. For Sarcophyton, comparisons were 
only possible for Malilnep, Cabunggan, and Panakalan. Among the three 
genera, only Lobophytum exhibited significant differences (Kolmogorov- 
Smirnov p-value < 0.05) in the size-frequency distributions among the 
sites. Malilnep differed from Cabunggan and Caniogan, while Panakalan 
differed from Panakalan. 

4. Discussion 

This is the first study to engage with the community and population 
structure of soft corals in the Philippines. Overall, the average soft coral 
cover of BARC is 3.2% ± 1.2 SE, which is similar to the national average 
soft coral cover of 3.2% ± 0.6 SE reported by Licuanan et al. (2019). 
These results resemble those found for the Southern Islands in Singapore 
(Goh et al., 2009). In contrast, soft coral cover reports were highly 
variable for Eilat (northern Red Sea), central Great Barrier Reef 
(Australia), and Papua New Guinea, ranging from 0 to 50% (Benayahu 
and Loya, 1977, 1981; Dinesen, 1983; Tursch and Tursch, 1982). 
Comparisons with the soft coral cover reported from other regions 
indicate that BARC possesses an overall low average soft coral cover. 

The findings from this study contribute to the data currently avail
able from taxonomy-oriented studies on Philippine octocorals published 
decades ago (i.e., Light, 1913, 1914, 1915a, 1915b, 1915c; Roxas, 1932, 
1933a, 1933b). Despite BARC being considered a generally disturbed 
area, its taxa richness in terms of the families and genera observed is 
comparable to those reported from other studies in other regions (e.g., 
Benayahu and Loya, 1977; Tursch and Tursch, 1982; Benayahu, 2002; 
Benayahu et al., 2004; Goh et al., 2009; Mohammad et al., 2016; Ismail 
et al., 2017). However, the limited taxonomic resolution of the present 
study highlights the need for assessments to the species level in order to 

provide more in-depth information on the general biodiversity of the 
Coral Triangle region (Karlson et al., 2004; Sanciangco et al., 2013). 

Differences in both the community structure and mean soft coral 
cover within-sites indicate stronger variations on smaller spatial scales 
(several hundred meters) than on a larger one (>1 km) (Tables 1 and 2). 
The significant difference in the community structure within-sites, 
despite having insignificant differences in taxa richness, can be 
explained mainly by the differences in the covers of the taxonomic 
groups present (see Table S4 for dissimilarity percentages of stations 
within-sites), and not by what groups were present. This variability may 
indicate the major contribution of factors operating on a more local 
scale, such as biological interactions with other organisms and other 
environmental factors such as water quality. The differences in envi
ronmental conditions in BARC even on a small spatial scale (< 1 km) 
were shown by previous studies. Cardenas et al. (2010) and Senal et al. 
(2011) found differences in nutrient levels between adjacent stations in 
BARC. Small spatial scale environmental variability might be the main 
driver of the differences found here between the stations within-sites. 
However, the present study was unable to directly identify environ
mental factors that influenced the differences in soft coral community 
assemblage and cover at this scale. Thus, a future examination of the 
environmental differences on a smaller spatial scale is necessary. 

High soft and hard coral cover in Balingasay can be explained by the 
relatively high water clarity in the site (Fig. 3). De’ath and Fabricius 
(2008) postulated that coral communities are healthier among reefs 
whose Secchi depth averages at 10 m or greater. In our study, except for 
Balingasay, all the sites had Secchi depths less than 10 m. This may 
explain poor coral cover in other sites, especially in Trenchera with 
Secchi depth less than 5 m. The CCA ordination plot shows the negative 
correlation of the stations in Trenchera to water clarity and its positive 
correlation to silt cover, indicating high siltation in these stations 
(Fig. 3). 

High soft coral cover in Balingasay was attributed to the high cover 
of Clavularia. This can be explained mainly by the high positive corre
lation of Clavularia to exposure to waves (Fig. 3). Though Balingasay had 
the highest hard coral cover among the sites, Clavularia mats were 
observed to overgrow live hard corals which may be detrimental to the 
overall hard coral community in the site. This dominance by Clavularia 
might have been triggered by a pulse disturbance, such as a sudden 
runoff of sediments and freshwater derived from a nearby river during 
the wet season (personal observations). This dominance can also be 
explained by the life-history strategies and capabilities of Clavularia 
which can be advantageous in highly turbulent areas. As surface- 
brooders, Clavularia planulae settle directly onto nearby substrate and 
are protected by mucus sheaths while attaching to the colony’s hard- 

Fig. 4. Soft corals of the Bolinao-Anda Reef Complex (BARC): average density of colonies per 50 m2 (±SE) of the three studied genera at each of the seven study sites.  
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coral calyces (Aliño and Coll, 1989). In the Great Barrier Reef, Clavularia 
has been shown to outcompete hard corals during competition for space 
(Aliño et al., 1992). Indeed, in Brazil, clavulariids were found to domi
nate the benthic community and led to a drastic change in its structure 
over time (Mantelatto et al., 2018). The dominance of Clavularia may 
benefit from well-lit and highly exposed areas such as Balingasay. This 
also shows the importance of long-term coral reef monitoring, to see 
how Clavularia may change benthic community structure in the future. 

The low soft coral taxa richness and cover observed at Trenchera, the 
site nearest the fish farming area, coupled with the lowest hard coral 
cover value, might have been the result of the poor water quality. 
Similar conditions at this site have been reported in previous studies (i. 
e., Villanueva et al., 2005; Ferrera et al., 2016). Only a few studies have 
investigated the effects of the decline in water quality parameters on soft 
corals: for example, increased nitrogen levels were shown to result in 
higher stress metabolites of the soft coral Sarcophyton (Fleury et al., 
2000); high levels of sedimentation were suggested to decrease pro
ductivity due to increased mucus production (Riegl and Branch, 1995); 
and in hard corals, a decrease in water quality, such as increased 

sedimentation and nutrient levels, together with reduced light levels, 
had been widely shown to be detrimental to coral health (Fabricius, 
2005). In BARC, the negative environmental effects resulting from fish 
farming were found to affect the different life stages of hard corals, such 
as decreased recruitment, fecundity, and survival of both adults and 
juveniles (Villanueva et al., 2005, 2006; Quimpo et al., 2020). These are 
probably the same mechanisms that have negatively affected the soft 
coral community in Trenchera. 

The presence of azooxanthellate taxa (families Paraplexauriidae and 
Nidaliidae and the genus Dendronephthya) at Trenchera and Lucero is 
probably due to low water transparency. The Secchi depth measure
ments at the sites indicated highly turbid waters (Table 3). In Hong 
Kong, a similar pattern was noted by Fabricius and McCorry (2006), 
where zooxanthellate taxa were observed to be restricted to areas with 
high water clarity. The reduced richness of zooxanthellate taxa and the 
presence of azooxanthellates in very shallow waters, such as in 
Trenchera, would therefore appear to indicate low light levels resulting 
from high turbidity. 

Different soft coral taxa may have different preferences and toler
ances to environmental conditions (e.g., Riegl and Branch, 1995; Fab
ricius and Alderslade, 2001; Fabricius and McCorry, 2006; Inoue et al., 
2013). Among the taxonomic groups present, Lobophytum contributed 
greatly to the similarities within the 7 sites (Table 3). This indicates 
Lobophytum’s tolerance or resilience to both past and present distur
bances in the study region. Lobophytum is one of the genera most resil
ient to sedimentation in a reef in South Africa (Riegl and Branch, 1995). 
Sinularia too contributed to the similarities among most of the sites, 
possibly due to its similar morphology to Lobophythum (Riegl and 
Branch, 1995). Another finding in this study was that of the relatively 
high cover of Briareum in Trenchera, which comprises most of the soft 
coral cover at the site (Table 3). This might be due to the increased 
growth rate or increased competitive ability of Briareum driven by the 
environmental conditions at the site (Aliño et al., 1992). In the Great 
Barrier Reef, an increased competitive ability of Briareum was found 
when this soft coral was transplanted to inshore reefs with higher 
nutrient concentrations than offshore reefs (Aliño et al., 1992). Aside 
from the generally low water quality in BARC, one of the disturbances 
that might have contributed to the low abundance of the other soft coral 
groups is that of increased SST which might have led to bleaching. 
Strychar et al. (2005) found a higher resistance of alcyoniids than of a 
xeniid species to bleaching during elevated temperatures. However, the 
effect of the major bleaching events (Arceo et al., 2001) on the com
munity structure of the soft corals in BARC is unknown due to the lack of 
information regarding coverage of the different soft coral groups in past 
surveys. This highlights the need for coral reef monitoring that will 
include detailed analyses of different soft coral groups. 

The overall symmetrical size distribution of Sinularia and Sarcoph
yton demonstrates that different size classes of the colonies are well- 
represented and may indicate a healthy population in BARC (Bak and 
Meesters, 1998). It further indicates a high tolerance of these genera to 
disturbances, which may explain their dominance (Table 2). While 
symmetrical distributions were found for both Sarcophyton and Sinu
laria, Lobophytum exhibited a moderately-negative skewness (g1 =

− 0.56), indicating the dominance of large-sized colonies over smaller- 
sized colonies. The absence of smaller-sized colonies may indicate reef 
degradation, probably driven by high post-settlement mortality (Bak 
and Meesters, 1998). Though the dominance of large-sized Lobophytum 
colonies in this study was not as high as other coral size-frequency 
distributions in other studies done on heavily disturbed areas, it might 
still indicate reef degradation in BARC. High sedimentation may be one 
of the major causes of high mortality of recruits in the area (Humanes 
et al., 2017). In addition to silt coverage, the presence of macroalgae can 
prevent larval settlement due to lack of space (Tanner, 1995; Webster 
et al., 2015). The results may indicate differences in the responses of 
Lobophytum from Sinularia and Sarcophyton to present environmental 
conditions and possibly to past disturbances. In the reefs of Okinawa, 

Fig. 5. Soft corals of the Bolinao-Anda Reef Complex (BARC): size-frequency 
distribution of the genera (a) Lobophytum, (b) Sarcophyton, and (c) Sinularia. 
Normal distribution bell curves for the datasets are presented for comparison. 
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Japan, Loya et al. (2001) have observed the decrease in the cover and 
abundance of Lobophytum while Sinularia became more dominant after a 
bleaching event. Though we cannot presently identify the factors that 
have influenced soft coral size-frequency distributions in BARC, the 
dominance of large-sized colonies and the absence of juveniles may have 
negative implications for the Lobophytum population in the future. 

Significant differences in Lobophtyum size-frequency distribution 
among a number of sites were noted (Fig. S1). However, the low colony 
counts in Trenchera and Balingasay prevented us from comparing sites 
with significant differences in environmental conditions, mainly in 
terms of water clarity and exposure to waves. Comparisons of size- 
frequency distributions were only possible for Lucero, Malilnep, 
Cabunggan, Caniogan, and Panakalan because of adequate number of 
colonies in these sites. Because these sites did not differ in environ
mental conditions, at least in regard to the factors that were measured in 
this study, it was difficult to infer which factors contributed to these 
differences. The differences may therefore have also been driven by 
other factors that were not considered in this study, such as species-level 
differences, interactions with other organisms, and other more localized 
disturbances (Adjeroud et al., 2015). Again, this highlights the need to 
study the environmental differences on smaller spatial scales. Although 
we were not able to compare the size-frequency distributions among all 
the sites, we were able to compare the densities of the three studied 
groups among the sites. The low density of Lobophytum and the absence 
of both Sarcophyton and Sinularia in Trenchera can be explained by the 
low water quality there, as reflected in the site’s poor coral cover and 
taxa richness (Fig. 2). We also observed relatively low densities for the 
three groups in Balingasay, which may be a result of unfavorable con
ditions at the site; mainly high exposure and probable competition with 
Clavularia, which dominated the area. 

This study has provided information on the patterns of soft coral 
community and their population structures in relation to different 
environmental factors. The obtained results can be used to generate 
different hypotheses in relation to specific factors which may affect soft 
corals. However, future studies, designed to investigate specific hy
potheses, are still needed to provide data on the effects of specific fac
tors. It is recommended to conduct long-term monitoring that records 
the benthic communities together with the prevailing environmental 
parameters. Also, it should be noted that analysis of coral density, which 
requires counting individual colonies, is often not possible while 
analyzing photoquadrats. For future studies, it is recommended to adopt 
in situ surveys to generate data for different coral variables, including 
density of arborescent octocorals, such as sea fans. 

In this study, we have demonstrated the spatial differences in the soft 
coral community structures and presented the general population 
structure of the three selected groups in relation to differences in the 
environmental conditions at the different sites in BARC. We conclude 
that soft coral variables have the potential to function as indicators of 
varying environmental conditions, mainly changes in water quality. We 
therefore recommend the inclusion of soft coral community and popu
lation variables in the analysis of benthos data, for application in the 
different coral reef assessment or monitoring projects. This will 
contribute to a greater in-depth interpretation of the data necessary for 
coral reef management. The inclusion of octocoral assemblages during 
coral reef monitoring will also greatly contribute to a better under
standing of the different ecological mechanisms that together affect the 
future of coral reefs. This study may also serve as a steppingstone for 
future studies that will further investigate the understudied ecological 
roles played by octocorals. 
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