Prof. Eilon Shani

ביולוגיה מול.ואקול.צמחים סגל אקדמי בכיר
Prof. Eilon Shani
Phone: 03-6409125
Office: Britannia-Porter, 511

CV

Education

Period Degree Institute Faculty/Department
2003-2005 B.Sc. Hebrew University of Jerusalem Robert H. Smith Faculty of Agriculture, Food and Environment
2006-2010 Ph.D. Hebrew University of Jerusalem Robert H. Smith Faculty of Agriculture, Food and Environment

 

Employment

Period Rank/Function School/Department Institute
2011-2013 Post-Doctoral fellow Cell and Developmental Biology University of California San Diego
2013-2018 Senior Lecturer ​School of Plant Sciences and Food Security Tel Aviv University
Since 2018 Prof. School of Plant Sciences and Food Security Tel Aviv University

 

Other Appointments and Awards

Year Award/Appointment
2011 BARD Postdoctoral Fellowship
2011 Machiah Postdoctoral Fellowship
2015 Tel Aviv University - Teaching excellence appreciation
2016 The Marker Magazine, [40 under 40]
2017 Krill Prize – Wolf foundation
2017 Tel Aviv University - Rector award for excellence in teaching.
2018-present Member of the Israeli Young Academy

 

Research Interests

Plant Hormone Transport - Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially regulate hormone distribution. This ability is illustrated most clearly in the case of auxin (IAA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another. Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters are currently been identified, joining earlier findings on auxin transporters.

We are interested in the molecular factors regulating plant hormones transport mechanisms. We study the first events of cellular signaling - all the way to patterning of the whole plant, primarily focusing on the plant hormones auxin, abscisic acid and gibberellin.

 

Redundancy of plant genomes - Plant genomes are highly redundant. For example, 80% of Arabidopsis genes (22,020 of the ~25,500 total genes) belong to families with at least two members. As a result, most single null mutants do not present an evident phenotype as the overlapping function of one or more paralogs mask any effects. During the past two decades, genetic variation and forward genetics screen have been expanded by creating random mutagenized lines using chemical or radiation treatments leading to the identification of novel genetic processes. However, these approaches cannot overcome the genetic redundancy problem a large fraction of the potential phenotypic plasticity is “hidden”.

 

We aim to Investigate how plants balance robustness and specialization in hormone transport at the cellular and subcellular levels. Our group places key technological challenges that require interdisciplinary expertise to overcome the long-standing obstacle of functional redundancy in plants. We use genome scale artificial microRNAs (amiRNAs) and CRISPR technologies to generate mutants that allows us to identify the missing redundant hormone transporters to investigate the biological relevance of such specialized activity. In vitro transport assays and analyses of in vivo physiological responses reveal how gene families have developed complex robustness but diverse specialization.

Recent Publications

Selected Publications:

  1. Yanai O, Shani E, Dolezalb K, Tarkowskib P, Sablowskic R, Sandbergd G, Samacha A and Ori N (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis, Current Biology.
  2. Shani E, Yanai O and Ori N (2006). The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology.

  3. Shani E, Burko Y, Ben-Yaacov L, Berger Y, Goldshmidt A, Sharon E and Ori N (2009). Stage-specific regulation of leaf maturation by KNOXI proteins. Plant Cell.

  4. Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D and Ori N (2010). Cytokinin regulates compound leaf development in tomato. Plant Cell.

  5. Fleishon S, Shani E, Ori N and Weiss D (2011). Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytologist.

  6. Yanai O, Shani E, Russ D and Ori N (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. Plant Journal.

  7. Bargmann B.O.R, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Estelle M, Birnbaum K.D (2013). A map of cell type-specific auxin responses. Molecular Systems Biology.

  8. Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien R.Y and Estelle M (2013). Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. PNAS.

  9. Tal I, Zhang Y,Egevang Jørgensen M, Pisanty O, Barbosa I.C.R,  Zourelidou M, Regnault T, Crocoll C, Erik C.O, Weinstain R, Schwechheimer C, Halkier B.A, Nour-Eldin H.H, Estelle M and Shani E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nature Communication.

  10. Naser V and Shani E. (2016). Auxin response under osmotic stress. Plant Molecular Biology.

  11. Shani E, Salehin M, Zhang Y, Sanchez S.E, Doherty C, Wang R, Mangado C.C, Song L, Tal I, Pisanty O, Ecker J.R, Kay S.A, Pruneda-Paz J, Estelle M. (2017). Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Current Biology.

  12. Morozov D, Tal I, Pisanty O, Shani E and Cohen Y (2017). Microstructure and Microstructural Changes in Plant Tissues by Advanced Diffusion Magnetic Resonance Imaging Techniques. Journal of Experimental Botany.

  13. Hyams G, Abadi S, Avni A, Halperin E, Shani E, and Mayrose I (2018). Optimal design for the genome-editing of multiple members of a gene family using the CRISPR system. Journal of Molecular Biology.

  14. Roth O, Alvarez J.P, Levy M, Bowman J.L, Ori N and Shani E (2018). The KNOXI gene SHOOT MERISTEMLESS regulates flower organ identity in plants.  Plant Cell.

  15. Binenbaum J, Weinstain R, and Shani E (2018). Gibberellin localization and transport in plants. Trends in Plant Science.

  16. Zhang Y, Naser V, Pisanty O, Omary M, Wulff N, Charrier L, Tal I, Hauser F, Hao P, Roth O, Fromm H, Schroeder J, Geisler M, Nour-Eldin H.H, and Shani E (2018). A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nature Communication.

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>
Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
UI/UX Basch_Interactive